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Abstract
Complex systems arise in many different contexts from large communication
systems and transportation infrastructures to molecular biology. Most of these
systems can be organized into networks composed of nodes and interacting
edges. Here, we present a theoretical model that constructs bipartite networks
with the particular feature that the degree distribution can be tuned depending
on the probability rate of fundamental processes. We then use this model to
investigate protein-domain networks. A protein can be composed of up to
hundreds of domains. Each domain represents a conserved sequence segment
with specific functional tasks. We analyze the distribution of domains in Homo
sapiens and Arabidopsis thaliana organisms and the statistical analysis shows
that while (a) the number of domain types shared by k proteins exhibits a
power-law distribution, (b) the number of proteins composed of k types of
domains decays as an exponential distribution. The proposed mathematical
model generates bipartite graphs and predicts the emergence of this mixing
of (a) power-law and (b) exponential distributions. Our theoretical and
computational results show that this model requires (1) growth process and
(2) copy mechanism.

PACS numbers: 87.14Gc, 89.75.K, 87.23.Kg, 87.15Aa

1. Introduction

Many complex systems, ranging from protein interaction networks and social relationships to
transportation infrastructures, can be modeled as networks where the individuals or elementary
units of the system are represented by nodes and their interactions as edges. Recent empirical
and theoretical studies on complex networks have shown that many disparate systems, with
sizes ranging from hundreds to billions of nodes [1–4], have common characteristics and are
governed by similar organizing principles. In particular, these findings show that complex
networks deviate from predictions of random graph theory [5] made several decades ago and
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display a scale-free and hierarchical organization [6, 7]. Furthermore, local-level interaction
analyses indicate a significant prevalence and variety of highly characteristic patterns of
interactions, such as motifs, modules, cliques and communities with specific functional tasks
[8–10].

Proteome analyses of any organism represent an extraordinary challenge and have already
generated a massive amount of newly sequenced proteins, molecular structures, folding
mechanisms as well as interacting domains data. Based on this information, genome-scale
protein domain statistics as well as protein interaction maps can be investigated. Although
these networks are still incomplete, it allows for the first time a systems biology approach
to the cells. In this context, network biology is promising to provide an understanding of
the large-scale structure of functional interactions of any organism. Network analyses have
shown that several kinds of cellular networks such as metabolic pathways and protein–protein
interaction networks can be classified as scale-free networks [2, 11, 12].

Proteins are long chains of amino acids encoding a large variety of essential functions
in the cells of living organisms. Each protein can be composed of one or more conserved
sequence segments with specific functional tasks, which are called structural modules or
domains. These protein domains represent fundamental building blocks with structural and
functional features. However, it is worth noticing that a different classification allows the
definition of protein modules considered as a more compact structural unit in a protein with
a length in the range of only 20–40 residues [13, 14]. It is worth noticing that while the
proteins are individual molecules, protein domains represent just a part of protein sequences
and, therefore, are not visible independent units.

In this work, we investigate proteins composed of domains as fundamental building
blocks. In particular, we have analyzed the empirical data corresponding to proteins and
domains using Homo sapiens and Arabidopsis thaliana proteome information collected from
the UniProt [15] (UniProt/Swiss-Prot Release 56.0) and Integr8 [16] (Release 84 constructed
from UniProt 14.0) databases. We then investigate the distribution of kinds of domains in
H. sapiens and A. thaliana cells. The data analysis shows that while the number of domain
types shared by k proteins follows a scale-free distribution, the number of proteins composed
of k types of domains decays as an exponential distribution. Here, we aim to develop an
evolutionary model that rebuilds these asymmetric distributions. In contrast, most previous
theoretical models [17–19] did not focus on the relation between the number of kinds of
domains in proteins and that of domain types shared by k proteins.

This problem can be investigated by means of a bipartite graph whose nodes can be
classified into two disjoint sets N (proteins) and M (domains) such that each edge connects a
node in N and one in M [20]. For example, Nk indicates the number of proteins composed of
k domains. Similarly, Mk denotes the number of domains shared by k proteins.

Inspired by the empirical findings on the dissimilar nature of Nk and Mk distributions, we
have constructed a growing network model using the rate equation approach, first suggested by
Krapivsky et al [21], that explains the emergence of this mixing of exponential and scale-free
distributions. The model requires two evolutionary related ingredients: (1) growth process and
(2) copy mechanism. We first use the rate equation approach to construct the discrete equations
corresponding to the bipartite graph. We then transform them into differential equations and
solve them using the continuum limit.

2. Mathematical model

Let us consider a bipartite graph, whose nodes are divided into two disjoint sets N (proteins)
and M (domains), and only connections between two nodes in different sets N and M are
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Figure 1. Description of growth and copy mechanisms in our model for bipartite graphs. Squares
(proteins) (A) and circles (kinds of domains) (B) can be added and copied. One protein connected
to one (two) kind of domains indicates that this protein consists of one (two) kind of domains.

allowed as shown in figure 1. In what follows, Nk denotes the number of proteins (square) with
k edges (domains). Similarly, Mk denotes the number of domains (circle) shared by k proteins.
Furthermore, we consider that each domain represents a specific kind of domain. Therefore,
two domains corresponding to the same type of domain are not allowed. This is a crucial point
in our analysis. Then, we propose an algorithm that builds a power-law distribution for Mk

and an exponential distribution for Nk.

(i) The model is initialized with the same small number l of N-nodes and M-nodes. Each
node from lN is connected to a different node in lM, and then the degree of all N-nodes and
M-nodes is only 1, where we have assumed l = lN = lM .

(ii) At time t = 1, with probability αN , a randomly selected N-node is copied. Otherwise,
with probability βN , a new N-node is added. We then connect this new N-node to n0

randomly selected M-nodes. In this process, αN + βN = 1.

(iii) At the same time step, with probability αM , a randomly selected M-node is copied.
Otherwise, with probability βM , a new M-node is added. We then connect this new
M-node to m0 randomly selected N-nodes. As in the above process, αM + βM = 1.

(iv) Steps (2) and (3) are iterated t times until a desired number of nodes is generated. At the
end, the network will consist of the same number t + l of N-nodes and M-nodes.

Therefore, our model of growing bipartite networks is composed of two main ingredients:
(1) growth process and (2) copy mechanism. Figure 1 illustrates these mechanisms for both
sets of nodes. From this algorithm, we construct the rate equation for the bipartite network.
The rate equation approach was first introduced in network science by Krapivsky et al [21] and
applied to the study of percolation [22], protein evolution networks [23] and citation networks
as well as used in extensive theoretical analyses [24]. Furthermore, it has also been applied to
the computation of the node degree correlations [25]. On the other hand, models applied to
bipartite graphs are much less numerous and only a very few works have addressed the issue
[27]. See also the review on rate equation approach for further information [26]. By following
our algorithm, the rate equation for the time evolution of the number of nodes with degree k
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Figure 2. Fraction of nodes with degree greater than k. Computational simulation (circles) and
theoretical results (red dashed line) of the model using (A) equation (7) and (B) equation (10) with
αN = 0.8 and αM = 0.05. (A) Power-law decay with γ ′ = 1.25. (B) Theoretical results show an
exponential decay or even faster than exponential for a small fraction of nodes with higher degree.

(This figure is in colour only in the electronic version)

in both sets of nodes Nk and Mk can be written as

dNk

dt
= αM

(
k − 1

M(t)
Nk−1 − k

M(t)
Nk

)
+ βM

(
m0

N(t)
Nk−1 − m0

N(t)
Nk

)
+ αN

Nk

N(t)
+ βNδkn0

(1)

dMk

dt
= αN

(
k − 1

N(t)
Mk−1 − k

N(t)
Mk

)
+ βN

(
n0

M(t)
Mk−1 − n0

M(t)
Mk

)
+ αM

Mk

M(t)
+ βMδkm0 ,

(2)

where N(t) = t + l and M(t) = t + l are the total numbers of N-nodes and M-nodes at
time t, respectively. In these equations, δkn0 and δkm0 indicate the contribution of a new node
connected to already existing n0 and m0 nodes. It is to be noted that these two equations have
symmetric forms. From now, we focus on the construction of the equations for N-nodes. Next,
by introducing the probability distribution nk = Nk/N(t), we obtain

d((t + l)nk)

dt
= αM [(k − 1)nk−1 − knk] + βMm0(nk−1 − nk) + αNnk + βNδkn0 . (3)
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Figure 3. Fraction of nodes with degree greater than k. Computational simulation (circles) and
theoretical results (red dashed line) of the model using (A) equation (7) and (B) equation (10) with
αN = 0.5, αM = 0.5. Both figures (A) and (B) show a power-law distribution with γ ′ = 1.

(This figure is in colour only in the electronic version)

In the limit t → ∞, we obtain the equation for the stationary distribution:

nk = αM [(k − 1)nk−1 − knk] + βMm0(nk−1 − nk) + αNnk + βNδkn0 . (4)

In the continuum k limit, this equation takes the following form:

nk = − d

dk
[(αMk + βMm0)nk] + αNnk. (5)

Similarly, the equation for M-nodes reads as

mk = − d

dk
[(αNk + βNn0)mk] + αMmk. (6)

Then, from the last equation, we obtain

mk ∝ (αNk + βNn0)
− 1−αM +αN

αN . (7)

In the limit for large k (k → ∞),

mk ∝ k
− 1−αM +αN

αN (8)

∼ −k
− 1+αN

αN , (9)
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Figure 4. Fraction of nodes with degree greater than k. Computational simulation (circles) and
theoretical results of the model (red dashed line) of the model using (A) equation (7) and (B)
equation (10) with αN = 0.05, αM = 0.05. Both (A) and (B) distributions show an exponential
decay.

(This figure is in colour only in the electronic version)

where we have used αM ∼ 0 in the last equation. Therefore, the degree distribution for
M-nodes (number of domains shared by k proteins) obeys a power law.

On the other hand, from equation (5), we can write

nk ∝ (αMk + βMm0)
− 1−αN +αM

αM . (10)

In particular, in the limit αM → 0,

nk ∝ e− βN
m0

k
. (11)

Therefore, we see that the degree distribution for N-nodes (number of proteins composed of k
types of domains) obeys an exponential decay. We highlight the main features of the model
as follows.

(i) By using a bipartite growing network model composed of copy and random attachment
processes with suppression of copy of M-nodes (types of domains) (αM ∼ 0), we
reproduce the observed distributions of power law and exponential decay of several
real networks composed of two types of nodes.

(ii) αM ∼ 0 implies that M-nodes (kinds of domains) are unlikely to be copied, if compared
to N-nodes. This is meaningful because kinds of domains are unique and cannot be
duplicated by definition. This asymmetry in the growing mechanisms is fundamental to
derive the observed mixing distributions.
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Figure 5. Fraction of proteins with at least that number of kinds of domains for (A) H. sapiens
and (B) A. thaliana organisms. Data collected from UniProt and Integr8 databases. The data are
consistent with an exponential decay.

3. Model simulation

When both parameters αN , αM take values close to 1 simultaneously, a so-called giant
fluctuation occurs [22]. It indicates that a model that only includes the copy mechanism
(i.e. a model configuration with αN , αM close to 1) does not behave well and the resulting
distribution is singular and resembles the sum of delta functions in the large k region. Therefore,
the contribution of a ‘noise’ term is needed. While in Krapivsky et al [22], the noise effect is
introduced through a mutation-like mechanism, in our model the noise contribution comes from
the random attachment mechanism when at least one of the parameters βN , βM is non-zero.
Thus, with the exception of the case αN , αM close to 1, we show the computational simulation
of our model in the following three figures. Figure 2 shows the cumulative distributions
N(> k) and M(> k) of connectivities when the copy mechanism of M-nodes is suppressed
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Figure 6. Fraction of domains shared by at least that number of proteins: (A) H. sapiens and
(B) A. thaliana organisms. Data collected from UniProt and Integr8 databases. The data show a
power-law decay with γ ′ = 1.2.

and copies of N-nodes are allowed. It is well known that if the cumulative distribution M(> k)

obeys a power law with exponent γ ′, the degree distribution M(k) (or probability distribution
mk) also follows a power law with exponent γ = γ ′ + 1. The simulation results show that
while M(> k) obeys a power law, N(> k) follows a distribution that decays exponentially or
even faster for higher degrees. This copy mechanism suppression of M-nodes (domains) is
meaningful because we are considering kinds of domains in our problem, and a kind of domain
should be unique by definition. Next, figure 3 shows the case when both N-nodes and M-nodes
are allowed to be copied. Then, both distributions obey a power law. Finally, we consider the
case when N-nodes and M-nodes have the copy mechanism suppressed. As shown in figure 4,
both distributions follow an exponential decay. Here we remark that simulation results show
the cumulative degree distribution N(> k) and M(> k), instead of probability distribution nk

and mk.

8



J. Phys. A: Math. Theor. 42 (2009) 485005 J C Nacher et al

4. Experimental results

We have performed an empirical analysis using human proteins collected from the UniProt
[15] (UniProtKB/Swiss-Prot Release 56.0 of 22 July 2008) and Integr8 [16] (Release 84
constructed from UniProt 14.0) databases. Integr8 database provides a non-redundant set of
UniProt entries representing each complete proteome. We have obtained Pfam [28] domains
for each protein from the DR line of UniProt format.

Figure 5 shows an exponential distribution for the number of kinds of domains in a protein.
H. sapiens and A. thaliana proteins were downloaded from the UniProt and Integr8 databases.
Next, figure 6 shows the cumulative distribution of the number of domain types shared by k
H. sapiens and A. thaliana proteins in the UniProt and Integr8 databases. In this case, we can
observe that the distribution follows a power-law decay. These results are in agreement with
the analytical predictions of our evolutionary model shown in figure 2. It is worth noticing that
our model generates the same number of domains as proteins because the number of M-nodes
and N-nodes is the same by construction. However, we have also analyzed and computed this
case of asymmetric growth in the number of nodes and the results suggest that the mixing
of scale-free and exponential distributions is conserved. Moreover, a natural extension of
the present model could be to consider a noise term for partial rewiring of duplicated nodes,
which would lead to a more realistic modeling of protein duplication processes containing
divergence feature.

Mutation is an important process in biological evolution. While the duplication process
essentially generates the scale-freeness, mutation-related mechanisms play an important role
by avoiding the giant-fluctuation effect. In this work, the addition of new nodes could be
interpreted as a large (or complete) mutation, where all the links are rewired. However, an
analytical derivation of the model with a more precise mutation process that explicitly includes
a selective rewiring of edges would be an important future extension of this work.

5. Conclusion

In this work, we have developed a mathematical model for constructing bipartite networks
with the particular feature that the degree distribution can be tuned. We have then applied
it to the distribution of protein domains in H. sapiens and A. thaliana cells. The statistical
analyses show that while the number of domain types shared by k proteins follows a scale-free
distribution, the number of proteins composed of k types of domains decays as an exponential
distribution.

Based on this empirical observation, the proposed evolutionary model requires at least
the following ingredients: (1) growth process and (2) copy mechanism. The rate equation
approach was used for constructing the discrete equations of growing bipartite graphs and for
deriving the analytical results. This model does not only explain the observed asymmetry in
the distribution of protein composed of k unique domains and number of domains shared by k
proteins but also predicts the degree exponent for the power law in the vicinity of value γ = 2.

Furthermore, the model elucidates that the suppression of copy mechanisms in one set
of nodes is enough to create the mixture distribution and the symmetry breaking. This copy
mechanism of suppression of M-nodes (domains) is reasonable because we are considering
kinds of domains in this problem, and a kind of domain can be considered unique by definition.

It is worth noticing that genome evolution consisting of domain shuffling events has also
been investigated using more complex models based on diffusion approximation of birth-
and-death processes [18, 29]. While the emergence of the power law of domain families
was investigated using these models, the nature of the exponential decay for the number of
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kinds of domains in a protein as well as for protein complexes was only shown using data
analyses and dynamic simulations [30]. In contrast, here we used a rate equation approach for
developing a bipartite graph-based model that simultaneously explains the emergence of these
asymmetric distributions. Furthermore, this model notably simplifies the computation and
easily allows the incorporation of additional evolutionary mechanisms. Similar evolutionary
rules shown in protein family network analysis [31] could be incorporated in the proposed
bipartite framework. A natural extension and further analysis could be to consider a noise
term for partial rewiring of duplicated nodes and a precise analytical derivation and simulation
of the model when mutation process is incorporated.

Finally, the present bipartite network construction is very general which makes it suitable
for its extension and possible application to many other non-biological and biological systems.
Of particular interest would be the study of the movie-actor and scientific collaborations [32]
and the music recommendation networks [33], which also exhibit an asymmetric distribution
for both sets of nodes.
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